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INTRODUCTION

Modifications of the land surface during urbanization can produce tremendous
changes in the patterns and the processes of stormwater runoff.  These changes result
from clearing vegetation, compacting soil, ditching and draining, and finally covering the
land surface with impervious roofs and roads.  The infiltration capacity of these covered
areas is lowered to zero, and much of the remaining soil-covered area is trampled to a
near-impervious state.  Compacted, stripped, or paved-over soil also has lower storage
volumes, and so even if precipitation can infiltrate, the soil reaches surface saturation
more rapidly and more frequently.   This results in pervasive changes to water quantity,
water quality, and the associated ecological function of streams and riparian areas. 

In addition to changes in how rainfall is absorbed or runs off of hillslopes,
urbanization affects other elements of the drainage system.  Gutters, drains, and storm
sewers are laid in the urbanized area to convey runoff rapidly to stream channels.
Natural channels are often straightened, deepened, or lined with concrete to make them
hydraulically smoother.  Each of these changes increases the efficiency of the channel,
transmitting the flood wave downstream faster and with less retardation by the channel
and destroys the habitat for stream biota.

Because of the profound effect of urban development on aquatic systems,
characterizing the land cover of a region is critical for a variety of resource-management
applications.  In the Pacific Northwest, this characterization has been used most
commonly to correlate the intensity of human activity with observed stream or wetland
conditions, in order to predict the health of the stream system or to guide the allocation
of mitigation efforts.  For example, measured biological conditions in lowland streams
are regularly presented in terms of “impervious area percentage” of the contributing
watershed.  Land cover is a primary input parameter for numerical hydrologic models
(such as the Hydrologic Simulation Program Fortran [HSPF], widely used by the
surface-water management agencies of King County, Snohomish County, the cities of
Seattle and Bellevue, and the consultants of these and smaller jurisdictions throughout
western Washington).  Every one of the $20+ million in capital projects planned or under
construction by King County Water and Land Resources Division, for example, is
designed using HSPF with land cover as a primary, determining input.

Unfortunately, there is little consistency or quality control in how land-cover data are
collected and analyzed.  Some of this variety is entirely appropriate—the methods and
the products for assessing wilderness-area potential in the Cascade Range have little
overlap with those used to plan optimal siting of commuter-rail stations, for example.
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Yet certain applications constantly reemerge, and so typical procedures have been
developed but only on an ad hoc basis.

The characterization of land cover for purposes of evaluating and assessing aquatic-
system conditions is one such application.  Yet the imprecision of the methodology
currently used to classify land cover belies the significance of the results: typically,
recent 1:12,000-scale airphotos (within the last 2-3 years) are manually discriminated by
a technician into eight or so different “classes,” of which four discriminate urban
development of different densities and the remainder characterize the unbuilt areas.
Discrimination is at the judgement of the operator, following established guidelines;
typical minimum unit areas are one to five acres (about 100 m minimum dimensions);
and subsequent ground truthing is nonexistent.  Typical analyses require about 1
person-week for a 10 mi2 area, and once the operator is trained there are no
opportunities for greater speed—every new area requires an equivalent level of effort.
This is the procedure against which any alternative method should be compared.

Remotely sensed data from satellites provide an alternative source of information on
land cover over very large areas.  The traditional approach to classifying remotely
sensed data from satellites into discrete classes of land cover involves a lengthy
process of automated classification, clustering of spectral signatures, much fine-tuning,
and an eventual supervised classification.  This process can be both time and resource-
intensive.  It is also continually being refined, and so the methodologies are not
consistent.

We have developed an alternative approach using Landsat satellite imagery to
produce the same general type of land-cover characterization as has currently found
widespread acceptance and use across the region.  However, our methodology does so
in a way that achieves maximum utility and consistency for a particular group of users—
individuals and agencies needing to assess watershed conditions in the urban, and
urbanizing, parts of western Washington.  The classes of land cover produced have
been chosen to reflect the categories that can be readily distinguished in the satellite
data and to have important differences in their associated runoff and watershed
characteristics.

The advantages of such an approach are obvious.  The algorithm is developed only
once; after completion, it can be applied rapidly to any other selected area through GIS
software.   It does not depend on the discretion of individual operators and so the
results are reproducible. These advantages have not been lost on public agencies, but
those agencies are not equipped to pursue such efforts systematically, given project-
related geographic boundaries, time constraints, staff turnover, and the difficulty of inter-
agency communication. With suitable testing and documentation, the release of these
data layers through the University of Washington may encourage agencies across the
region to adopt a uniform methodology, resulting in a degree of uniformity in data
collection, analysis, and reporting of these data that is currently unavailable.
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METHODOLOGY

The methodology used in this project is summarized in Figure 1.  The area of this
analysis was a portion of the Puget Sound lowlands of northwestern Washington State.
The area extends from the city of Olympia in the south to Everett in the north, and it
includes the entire Seattle-Tacoma-Everett metropolitan area from Puget Sound east to
the foothills of the Cascade Mountain range.  The study site was chosen to cover a
broad range of urban, suburban, and rural areas while excluding those areas with
extreme topographic relief and little or no urban development.

 Our classification scheme followed a multi-step process that was designed to be
intuitive while yielding accurate results.  It consisted of:

1. Combination and manipulation of the raw satellite images;

2. Selection of training sites, where different land-cover categories could be defined;

3. Extraction of the “typical” Landsat signatures for each coverage;

4. Classification of the entire image, following the characteristics defined for each
class; and

5. Assessment of the classification’s accuracy by checking actual field conditions at
selected locations.

STEP 1: Image Manipulation

Landsat satellite images from 1991 and 1998 were obtained for northwestern
Washington State.  The resolution of these images was 30 meters, meaning that each
pixel represented an area of 900 m2.  The raw Landsat images were imported into the
ERDAS Imagine software package and geocorrected to the UTM projection (zone 10N,
spheroid Clarke 1866, datum NAD27) utilizing digital orthophotos (DOQQ's) as the
reference projection source.  This allowed the raw Landsat and classified images to be
compared directly to the DOQQ’s using the geographic linking function in the Imagine
viewer.

The raw Landsat images contain 7 layers, or bands, that correspond to reflectances
received by the satellite sensors in various wavelength ranges.  Bands 2, 3 and 4
(corresponding to the visible blue, near infrared, and mid-range infrared portions of the
EM spectrum) were extracted from the raw image.  These bands were selected for their
ability to discriminate and detect characteristics of vegetation such as chlorophyll
absorption, biomass content, and vegetation vigor (Lillesand and Kiefer 1994).  Using
Imagine’s Model Maker module, bands 3 and 4 were used to create a Normalized
Difference Vegetation Index (NDVI) layer.  The NDVI layer is particularly useful in
discerning vegetation vigor and subtler variations in vegetative land cover and is
commonly used in remote sensing research.  The NDVI layer was then combined with
the individual bands 2, 3 and 4 using the STACKLAYER function to yield one composite
image with 4 layers.  This image is hereafter referred to as the “234N image.”  The
234N image was clipped to the extent of the study area and the remainder of the image
was discarded.
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STEP 2: Training Sites

The next step in the process was the identification of and delineation of training sites
used to define the characteristic pattern, or “signature,” in the 234N image for each
land-cover category.  “Training sites” are areas of known land cover, usually no more
than 1000 m2 in size, determined from ground truthing in the field or from inspection of
digital orthophoto quarter quadrangles (DOQQ’s).  We used a combination of both
methods to obtain a series of suitable training sites for each desired class.  Training
sites were digitized onto a separate layer in Imagine that could be overlaid onto the
Landsat and DOQQ images.

Separate training sites were created for a total of 9 classes, using a two-tier scheme
(Table 1).  The top scheme, called Toplevel, consisted of 4 broad land cover classes:
“intense urban” (land nearly completely paved or built upon), “water,” “vegetation,” and
“broad urban” (essentially everything remaining).  The second tier, called 5Veg,
consisted of 5 finer classes that subdivided the “vegetation” and “broad urban” classes
of Toplevel into “deciduous vegetation,” “coniferous vegetation,” “grassy/shrubby
vegetation,” “forested urban” (developed land with significant canopy coverage), and
“grassy urban” (developed land with few trees but significant grass coverage).

Toplevel
• Intense urban
• Water
• Vegetation
• Broad urban

5Veg
• Deciduous

vegetation
• Coniferous

vegetation
• Grass/shrub

vegetation
• Forested urban
• Grassy urban

Table 1.  Classes used in the land-cover classification.

STEP 3: Signature Extraction

Once selected, the outlines of the training sites were overlaid on the 234N image.
Using the Signature Editor module in Imagine, spectral signatures were simultaneously
extracted from each of the 4 layers of the 234N image, yielding “signatures” for each
training site within each class.  Signatures correspond to a cluster of reflectance values
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within each band.  Signatures within each class were then combined to obtain a single
spectral signature range in 4-dimensional space for each class.  The output of this step
thus consisted of 9 distinct sets of signatures.

STEP 4: Supervised  Classification

The first supervised classification was conducted on the 234N image using the
Toplevel, or first-tier, signatures (i.e. intense urban, water, vegetation, and broad urban).
The classification utilized the parallelepiped non-parametric rule and the maximum-
likelihood parametric rules in classification of individual pixels of the Landsat image.
Remote sensing software packages, such as Imagine, construct bounding boxes, or
parallelpipeds, around clusters of signatures collected from the training sites.  The limits
of these parallelpipeds represent each individual class in multi-spectral space. In
classifying the entire image, certain decision rules govern how pixels are classified (see
chapter 7 in Lillesand and Kiefer [1994] for a more thorough explanation of classification
decision rules).  Pixels whose multi-spectral reflectance values fall within the limits of a
parallelpiped are immediately classified to that parallelpiped’s corresponding class.  In
areas where parallepipeds overlap or for pixels that fall outside parallepiped limits, the
maximum likelihood decision rule determines the classification.  This rule calculates the
statistical probability of a pixel belonging to a particular class, based on the variance
and covariance of the spectral signatures.  The combination of the parallepiped and
maximum-likelihood decision rules results in an output map in which no pixels are left
unclassified.

The output from this process, termed the “Toplevel image,” consisted of 4 classes
corresponding to the 4 Toplevel signatures in Table 1.  This image was then recoded,
using the RECODE function in Imagine, to create masks for each of the 4 classes.
From this process, we created 4 masks, one for each Toplevel category.  Masks only
contain pixel values of 0 and 1 and are useful in cropping other maps.

A second supervised classification was then conducted on the 234N image using the
second-tier signatures (deciduous vegetation, coniferous vegetation, grass/shrub,
forested urban, and grassy urban).  This classification used the same parallelepiped-
maximum likelihood classification rules and produced a classified image with 5 classes
corresponding to the 5Veg signatures in Table 1.  This image is referred to as the “5Veg
image.”

This new five-class image took all pixels in the study area and assigned them to one
of the 5Veg categories.  Some misclassification occurred during this step as areas of
water or intense urban cover were classified to one of the 5Veg classes.  To eliminate
these misclassified pixels, we used the Toplevel broad urban mask to crop the 5Veg
image to the areas not originally classified as water, vegetation, or intense urban.  The
resulting image contained a 5-class classified image of the broad urban study area.  We
then used the Toplevel vegetation mask to crop the original 5Veg image to the areas
that were classified as vegetation in the Toplevel classification.  This step allowed us to
break the coarse Toplevel classes of vegetation and broad urban into the finer 5Veg
classes.
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At this point we had four images: a single-class “intense urban” image, a single-class
“water” image, and two images with five classes for the vegetated and broad urban
areas.  Each of the images was mutually exclusive, with their own unique coverage
within the study area.  The final step was to combine each of these images into a final
composite seven-class image (Table 2).  Each of the four images was recoded using
the RECODE function in Imagine to give each class a unique value.  All the images
were then combined to obtain a final image called “Final-classed”.

Final Classes
Urban
Water
Deciduous vegetation
Coniferous vegetation
Grass/shrub
Forested urban
Grassy urban

Table 2.  Final classes used in classification.

STEP 5: Accuracy Assessment

The final step involves an accuracy assessment of the classed images for 1991 and
1998.  This work is in progress as of mid-1999 under the supervision of Derek Booth
and Kristina Hill.  It entails a pixel-by-pixel error check using the classified images and
some source of ground truthing (either DOQQ’s or in-field truthing).  An error check that
examines a larger array of pixels simultaneously will also be used to determine the
aggregate accuracy of the images.

PRELIMINARY RESULTS

We have conducted a qualitative evaluation of the classification outputs using digital
and printed overlays of the classified images and the DOQQ’s.  The printed results of
this evaluation are presented in Figures 2-7.  This evaluation suggests that our
classification method will be sufficiently accurate for use in land cover-related and urban
hydrological research, particularly in comparison to the slow and inconsistent methods
currently in use throughout the region.  Where aggregated across a watershed, the
classification seems to be fairly accurate in discriminating between the 7 classes of land
cover used.  The classification scheme also seems to be able to successfully discern
between forested urban and grassy urban areas (see figure X).  While we have not
explicitly determined a threshold of tree cover or grass cover that defines each of these
classes, a visual examination of the overlays seems to indicate that our scheme
matches the categories well.

FURTHER APPLICATIONS
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Although multiple land-cover catagories have great utility, there is great appeal to
identifying a single “index” variable that characterizes the magnitude of urban
development in a watershed. Patterns can be readily displayed, correlations are
simplified, and communication between scientists and planners is enhanced.  Yet urban
development comes in many styles, occurs on many different types of landscapes, and
is accompanied by a variety of mitigation measures designed to reduce its negative
consequences on downstream watercourses.  So any simple correlation between any
single measure of urbanization and aquatic-system condition are unlikely to be precise.

Past efforts to quantify the degree of urban development have not been consistent.
Recent and historical use of the most widely accepted parameter, percent impervious
area in the contributing watershed, has been carefully documented in a recent review
article (Schueler, 1995) but several issues remain ambiguous.  Most significant of these
is the distinction between total impervious area  (TIA) and effective impervious area
(EIA).

TIA is the “intuitive” definition of imperviousness: that fraction of the watershed
covered by constructed, non-infiltrating surfaces such as concrete, asphalt, and
buildings.  Hydrologically this definition is incomplete for two reasons.  First, it ignores
nominally “pervious” surfaces that are sufficiently compacted or otherwise so low in
permeability that the rate of runoff from them are similar or indistinguishable from
pavement.  For example, Wigmosta and others (1994) found that the impervious unit-
area runoff was only 20 percent greater than that from pervious areas, primarily thin
sodded lawns over glacial till, in a western Washington residential subdivision.  Clearly,
this hydrologic contribution cannot be ignored entirely.

The second limitation of TIA is that it includes some paved surfaces that may
contribute nothing to the storm-runoff response of the downstream channel.  A gazebo
in the middle of parkland, for example, probably will impose no hydrologic changes into
the watershed except a very localized elevation of soil moisture at the drip line of its
roof.  Less obvious, but still relevant, will be the different downstream consequences of
rooftops that drain alternatively into a piped storm-drain system, with direct discharge
into a natural stream, or onto splashblocks that disperse the runoff onto the garden at
each corner of the building.

The first of these TIA limitations, the production of significant runoff from nominally
pervious surfaces, is typically ignored in the characterization of urban development.
The reason for such an approach lies in the difficulty in identifying such areas and
estimating their contribution, although site-specific studies demonstrate that these tasks
can be accomplished with simple field methods and the resulting hydrologic insights are
often valuable (Burges and others, 1989).  Furthermore, the degree to which pervious
areas shed water as overland flow should be related, albeit imperfectly, with the amount
of impervious area: where construction and development is more intense and covers
progressively greater fractions of the watershed, the more likely that the intervening
green spaces have been stripped and compacted during construction and only
imperfectly rehabilitated for their hydrologic functions during subsequent “landscaping.”

The second of these TIA limitations, inclusion of non-contributing impervious areas,
is formally addressed through the concept of effective impervious areas, defined as the
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impervious surfaces with direct hydraulic connection to the downstream drainage (or
stream) system.  Thus any part of the TIA that drains onto pervious (i.e. “green”) ground
is excluded from the measurement of EIA.  This parameter, at least conceptually,
captures the hydrologic significance of imperviousness.  EIA is the parameter normally
used to characterize urban development in hydrologic models.

Yet the direct measurement of EIA is complicated.  Studies designed specifically to
quantify this parameter must make direct, independent measurements of both TIA and
EIA (Alley and Veenhuis, 1983; Laenen, 1983; Prysch and Ebbert, 1986).  The results
can then be generalized either as either a correlation between the two parameters or as
a “typical” value for a given land use.  Alley and Veenhuis found that [EIA] = 0.15
[TIA]1.41 in their highly urbanized watersheds in Denver, Colorado (r2 = 0.98).  Using the
other approach (I,e. typical land-use values), Dinicola (1989) compiled the findings of
these earlier studies to recommend a single set of impervious-area values based on five
land-use categories for use in studies of western Washington watersheds  (Table 3).

LAND USE TIA (%) EIA (%)
Low density residential (1 unit per 2-5

acres)
10 4

Medium density residential (1 unit per acre) 20 10
“Suburban” density  (4 units per acre) 35 24
High density (multi-family or 8+ units per

acre)
60 48

Commercial and industrial 90 86

Table 3.   Presumed Relationship between Imperviousness and Land Use (from
Dinicola, 1989).

Because our analysis is being conducted at a much finer scale (30-m pixels) and
detects only land-cover differences, we can evaluate only total imperviousness.  Land-
use categories, and thus EIA, might be inferred from larger clusters and patterns of
individual pixels, but this lies outside the scope of this present effort.  Based on detailed
measurements of impervious areas oat our training sites, we anticipate having median
and ranges of TIA values associated with each of the nine land-cover categories at the
conclusion of this project.
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Final Classified Image

TOPLEVEL

Deciduous
Coniferous
Grass/Shrub
Forested urban
Grassy urban

234N image

Signature
Extraction

Coarse
Training Sites

5VEG

Signature
Extraction

Fine
Training Sites

Urban
Vegetation
Water
Broad Urban mask

mask

Reclassified
“Vegetation”

Reclassified
“Broad Urban”

combine

Urban
Water

Deciduous
Coniferous

Grass/Shrub
Forested urban
Grassy urban

Figure 1.  Classification Process
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APPENDIX—ERROR-CHECKING THE CLASSIFIED 1991 IMAGE

After classifying the entire 1991 Landsat image, randomly selected classified pixels
were compared with low-elevation orthophotos to determine the actual land cover that
corresponds to each category in the classified image.  The categories, and their
corresponding average land cover percentages, are as follows:

Actual Land Cover from Orthophotos
(percentages, averaged for 100 pixels)

Open
water

Trees Shrubs/
grass

Pavement
or bare
earth

Categories from
the classified
Landsat image:

“UNDEVELOPED”

Open water 100 0 0 0

Coniferous
vegetation

91 8 1

Deciduous
vegetation

47 49 4

“DEVELOPED”

Grassy/shrubby
vegetation

8 63 29

Forested urban 7 39 31 23

Grassy urban 8 61 31

Intense urban 9 8 21 62
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Note:  See the associated spreadsheet for the percentage of land-cover values for each of the
100 pixels evaluated for each classification category.  The category “Water” had 100% observed
water coverage and so is not graphed here.

Paved

2 1 %

G r a s s

3 1 %

Water

7 %

Bare Ear th

1 %

Trees

4 0 %

FORESTED URBAN

G r a s s

6 1 %

Trees

8 %

Paved

3 0 %

Bare  o r  

p a ved

1 %

GRASSY URBAN

Paved

5 6 %

Trees

8 %

G r a s s

2 0 %

Bare  o r  

p a ved

3 %

Bare Ear th

4 %Water

9 %

INTENSE URBAN

Trees

47%

Bare or 

paved

1%

Paved

3%

Grass

49%

DECIDUOUS

Trees

92%

Paved

0%
Grass

8%

CONIFEROUS

Grass

64%

Trees

7%

Paved

14%

Bare or 

paved

8%
Bare Earth

7%

GRASS

Forested Urban

Grassy Urban

Intense Urban Grass

Deciduous

Coniferous

1991 LAND COVER CATEGORIES


